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A CRITIQUE OF DEMING'S DISCUSSION OF ACCEPTANCE SAMPLING PROCEDURES

by
Richard E. Barlow and Xiang Zhang

1. INTRODUCTION

The basic thesis of this paper is that W. Edwards Deming is, at heart,

a Bayesian. His interest in information and how to use it, together with
his emphasis on solving real problems by minimizing expected costs, more
than supports this thesis.

Deming (1982) Chapter 13, considers the following production situation.
Periodically, lots of size N of similar units arrive and are put into
assemblies in a production line. The decision problem is whether or not to
inspect units before they are put into assemblies. If we opt for inspection,
what sample size, n , of the lot size, N , should be inspected? Given x
observed defectives in a sample of size n , the only decisions which will be
considered are: do(x,n) - install the remaining N - n without inspection
or dl(x,n) - inspect all of the remaining N - n before installation.

Let p be the percent defective over many lots obtained from the same
vendor. Suppose we believe that the vendor's production of units is in

statistical control. Let n(p) be our probability assessment for this

parameter p based on previous experience. n(p) could be degenerate at,

A
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say p, - In any event, haphazard sampling to check on the proportion de-
fective in particular lots is prudent to update information on p .

. Systematic lot sampling plans in Dodge-Romig (1929) end also implemented

a3 s e
[

in Military Standard 105D (1963) are described in every textbook on quality

control (e.g., Grant and Leavenworth (1974)). These have had the approval
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of some government agencies and are widely used. Deming (1982) argues that
these sampling plans tend to maximize expected costs and should not be used.
The objective of these sampling plans is to provide a procedure whereby a
decision as to whether or not to reject the lot can be made automatically.
If the lot is rejected, it could be sent back to the vendor or it could be
subjected to 100% inspection with defective units replaced by good units.
Deming (1982) argues that the vendor should supply quality records to the
manufacturer and that they should work together on the quality problem as
opposed to simply sending bad lots back to the vendor. If lots determined
to be bad, based on a sample, are to be subjected to 100Z inspection and
bad units replaced by good units at vendor's expense, what should the sample
size, n , be? Deming argues that, givem prior information on p , the
minimum cost choice for n 18 either all or none; i.e., n=N or n=20 .
This choice is determined by the cost of sampling, the cost of replacing a
defective unit in the assembly by a good unit and n(p) . We will determine
conditions when this is correct and conditions when it is not.

(Deming (1982) points out on page 270 that there may be conditions under
which the all or none rule is not optimal but he does not furnish explicit

conditions.) Figure 1 describes our production setup.

Juran and Gryna (1980, section 17.2) consider the same problem

when p 1is known and they credit the solution to Martin (1964).

3
4

The mathematics of sampling inspection plans are discussed by Hald

« ¥ v
' e

.
. .
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(1981). However, we follow the notation and mathematical development of

A
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v Deming (1982). Let k1 be the expected cost to inspect one unit at the start.

-

Let k2 be the cost of a defective unit that gets into the production-line.

This cost will include the cost to tear down the assembly at the point where
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the defect is discovered. In some instances, we must replace the unit and

retest the assembly. Let Z, be 1 if the i-th unit is defective and O
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otherwise. Let CI(Zi) be the cost of inspecting unit 1 . If a unit

is inspected and found defective, additional units from another lot are
inspected until a good unit is found. (We make this model assumption since
all defective units which are found will be replaced at vendor's expense.)
Hence, conditional on p , the expected cost of inspecting unit 1 and,

if the unit is bad, inspecting until a good unit is found is

E[c1(z)) | p]l = k;[1 + p/q]
where q=1-p .
Let CR(Zj) be the cost of replacing unit 1 , if required, when it
is not inspected. Conditional on p , the expected cost of replacing unit
i in the assembly is

E[CR(Zi) | pl = p[k2 + kl/q] .

Note that, since the replacement must be good, there is again an inspec-
tion cost incurred to find a good unit.

The usual sampling plan depends on n and a critical number c .
If the observed number of defectives in the sample is less than or equal
to ¢, the lot i1s accepted and otherwise rejected. If the lot is accepted,
no further inspection is made. If the lot is rejected, the remaining
N - n are inspected. Let P(rej | n,c,p) be the prior conditional probabil-
ity that, under this inspection plan, all N wunits will be inspected. Let
P(acc | n,c,p) = 1 - P(rej | n,c,p) be the corresponding prior conditional
probability that the remaining N - n will not be inspected.

Given p , the expected cost of inspection of a lot of N incoming

parts will be

n N
E[ ) CI(Zi) | %] + P(rej | n,c,p)E[ ¥ cr(z,) | %]
i=]1 i=n+1

= ky[n + (N - n)P(re | n,e,p))(1 + p/q) .

~I

r
9
o
LW 1

o e
(ORI

B
"{‘
.

NS

..

. . - . v - - =
N “ .
Lt CONE IR
LI T, ® e
o b, L e te

» L T
'I ‘A.-'-‘l".

.'.
PPN,

()

o d I SRR T

st
Kt
PRt
Tatatarta

o .
]
iinba




2R AARE AR RN B T N o S S N ™ J "R S A - A et e g A A R L N T P e it

SO AN LEN YN BN SO R A A L N AN M o A I S A L T S A - Pl A
N
\
~ 5
. Given p , the expected cost from the defective units that get into
2 the production line will be
N
N P(acc | n,c,p)E| } CR(Z,) | p
~ n+l
..4
-
= (N - n)P(acc | n,c,p)p[k2 + kl/q]
where P(acc | n,c,p) = 1 - P(rej | n,e,p) . Let r = n/N and note that
the total expected cost, given p , is ;;j
. L 4
N k N[z + (1 - r)P(rej | n,c,p)](1 + p/q) s
- - . =
a + (1 - r)P(acc | n,c,p)[pkzlk1 + p/ql} o
- L.
.; Substituting P(rej | n,c,p) = 1 - P(acc | n,c,p) we have ;ﬂ-
- =
= kN1 + p/q + (1 - 1) [-P(ace | n,e,p) A + p/q) e
-
'-:.: + P(acc | n,c,p) (Pky/k, + p/Q)]} L_?
-,
" = klN{l + p/q + (1 - r)P(acc | n,c,p)(pkzlk1 -1} (1.1) ¢
el
- Since P(ace | n,c,p) > 0 , we see that the conditional total expected e
f: cost is minimized for r =0 or n =0 given p , when ':3
: (pk2/k1 ~1) <0 or p< kllk2 £
: S
- and for r =1 or n =N when i;ﬁ
) (pk,/k; = 1) 20 or p >k /k, . -
, L
-‘-_'q
If our prior density n(p) = 0 for p > kllkz s 1.e., we feel certain '2ﬂ
{ » that p < k,/k, , then n =0 is optimal. f‘
- 172 \
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i If, on the other hand, our prior demsity =n(p) =0 for p < kllk2 .
i i.e., we feel certain that p > kllk2 then n =N is optimal.

: . These results are recorded in Deming (1982) with no mention of a

:E possible prior density w(p) . For this reason, the case when w(p)

ii contains kl/k2 in an interval of its support was not considered. As we

shall see, the all or none results are not necessarily valid in this case.

v o
s

s L

'y sy

B

9 0 Y

v %5 T T
RTRRY
»

O

DU Y
vl
o

i s

r
AR
TS

1

s .‘l F
et

LR




L A R e T o e N e R R S e T T ey,

“w'a®uwta®uVa

1
Ip-n(p | n, x = 0)dp ikl/kz . (2.2)
0

L7
2. CONDITIONS WHEN 0 <n < N b
.'.\,.:
The solution to a similar problem, when p 1is partially unknown with 1}2
prior m(p) , was discussed by Hald (1960). However, he considered a hyper- t{:
[ 3
geometric rather than binomal model. His solutions are more complicated. N
The purpose of sampling is to gain information about p . If we think
we know p or if we think either p < kllk2 or p > kl/k2 (but of course, .
not both), then Deming is right - we should not sample. However, if we are ?_r
sufficiently uncertain about p , then our minimum expected cost strategy may ’:;
be to sample. The following results establish when 0 < n < N and suggest an Yi
algorithm for determining the optimal (m,c) inspection policy. The Beta(A,B) Lﬁ
density, w(p) < pAol(l - p)B_1 is often used in practice. However, our f;
results are valid for an arbitrary prior, r(p) . ;;
L.
Theorem 1: E:f
If n(p | n,x) 4s the posterior density for p given x defectives :t:
-
in a sample of size n , then n = N is optimal if and only if b
1 I::j
Ipﬂ(p | N- 1, x=0)dp > ky/k, . (2.1) '_
Y -
For the Beta(A,B) prior this means n = N if and only if
A/(A+B+N-1) > kl/k2 . —
Theorem 2: -i
If (2.1) does not hold, then the optimal n > n, where ?.
* o
n_ = max [0,n ] ﬁ?
* v
and n 1is the smallest value of n such that —
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<3 For the Beta(A,B) density R

n = max {0.[(k2/k1)A - A - B]} .

Theorem 3:

For n such that n,<n < N, the optimum value of ¢ is the largest

value of ¢ such that

1l
fpw(p | n,c)dp < k1/k2 .
0

i For the Beta(A,B) density, the solution c(n) is

f c(n) = min {n.[(kllkz)(n + A+ B) - Al} .

Theorem 4:

f. The policy (n,c(n) = n) and 0 < n < N 4s never the only optimal solution.

g It follows from Theorems 1 and 2 that if

f pr(p)dp > k,/k, ZZ'}Z

0 o]
o~

> and o
e

fp‘n(p | N~1, x=0)dp < k, /k, =

. =

- 0 :_‘J

ﬁ' o then the optimal n 18 neither O nor N . ;Q

- These results suggest the following algorithm. If kl 3_k2 then t?
~" 3

N n=0 is optimal. If N

0 ~
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1
N jp'ﬂ'(p | N-1 ’x'o)dp>k1/k2
0

then n = N , else compute n from Theorem 2. For each n 3_n° » find
the optimal c¢(n) wusing Theorem 3 and record the expected cost. Select
that (n,c(n)) policy having minimum expected cost. Another algorithm
will be given in the Appendix.

If we stop inspection, we can clearly gain no further information
about p and hence there would be no reason to resume inspection once

stopped. However, if there is a feedback loop from assembly tests, then

we may update our last posterior density for p and determine an optimal

. inspection policy for remainders.
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o 3. PROOFS OF THEOREMS R
. 3
i Our decision problem can be described by a decision tree as in i
Lo

. Figure 2. v
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: We will need the following lemma based on Figure 2.

7,

r_v_ "9

4’.‘ t-’.'-

Lemma 1.

7Y

Given (x,n) and restricting decisions to do(x.n) and dl(x,n) .

X ".',
RS
PRI

a s

do(x,n) is best if

D ] .v:":'

R0
“»
Y,

, 1
-.' ' fp-n(p | n,x)dp < kllk2
. 0

WA
a0, 0,

1

y and dl(x,n) otherwise.
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Proof:

The expected cost given (x,n) 1f we take decision do(x,n) is

C(dy) = E () [N - m)p(k, + Kk,/0) | m,x]

= (N-n)E [pCky + K /a) | n,x] .
If decision dl(x,n) is taken

C(d;) = (N - m)E [k (1 +p/Q) | n,x] .

Hence do(x,n) is optimal if C(do) < C(dl) or

1
J.p-n(p | n,x)ap < k1/k2 . Q.E.D.
0

By the principle of maximizing expected utility (or minimizing expected
cost in this case) if n are sampled and x are found defective, then we

should STOP inspection 1f

1

fp-n(p | nyx)dp < k,/k,
0

and inspect the remaining N - n otherwise in order to minimize our expected
cost given n and x . This principle and the monotone likelihood ratio
property, true for the binomial likelihood, are all that are needed to prove
our theorems. Clearly, many similar theorems can be proved for other prob-

ability models which also have the monotone likelihood ratio property. 1In

the binomial case, the likelihood
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)n-x

L(p | n,x) < p*(1 - p

has the property that if P; <Py then small values of x support Py
while large values of x support Py in the likelihood ratio sense;

i.e.,

L(pl | n’fl? L(pl | n,xz)

— > — ———————
L(p, | n,xl) = L(p,y | m,x,)

(3.1)

if X 2%,

replaces n 1in the left (right) ratio and n, <m, .

. The inequality is reversed if x is fixed, n, nz)
The following lemma is well known and is similar to Lemma 1 in
Karlin and Rubin (1956a).

Lemma 2:

Let 7(p) be a prior for p . Let (x,n) be data and suppose that

for P; <P,
L(p, | n,x)/L(p, | n,x)

is + 4in x and 4 in n . Let g(p) be + in p . Then

1
Is(p)ﬂ(p | n,x)dp
0

is 4+ in x (n fixed) and + in n (x fixed).

Proof of Theorem 1l:

Suppose we inspect N ~ 1 units and observe x = 0 defectives.
Given this information, our optimal decision is to inspect the remaining

unit by (2.1) and lemma 1. By (2.1) and lemma 2
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1
fpw(p | nyx)dp > k,/k, .
0
Hence, if (2.1) is true, then any inspection policy which is optimal after o
sampling will result in complete inspection. It follows under (2.1) that :{‘
n=N is optimal. Conversely, if n = N is optimal, then (2.1) must ;}j
be true. Q.E.D. .
Proof of Theorem 2:
By Theorem 1, if (2.1) does not hold then n = N 18 not optimal.
Suppose n 1is optimal but does not satisfy (2.1) or (2.2). Then
1
fpvr(p | n, x = 0)dp > k;/k,
0
which by lemma 2 implies
1
fp'"(p I n,x)dp > kllkz ’ A
0 AR
for all x, 0 <x <n . This implies n = N was optimal after all ;ﬁ}
which is a contradiction. Hence n >2n, as claimed. Q.E.D. é,
Proof of Theorem 3: :}ﬁ
o
After inspecting n units, consider the best of the two decisions: ::
d, : STOP further inspection o
d, : INSPECT the remaining N - n . £l
N
o
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Given n inspections and x observed defectives, do is best 1if 4?.
1
J‘P"(p | n,x)dp < kl/kz
0
and d1 otherwise. Hence the optimal c(n) 1is the value stated, again
by the lemma. Q.E.D.
- Proof of Theorem 4:
y By (1.1), we need only calculate
- kz
Lo (1 - n/N)E P(acc | n,e,p){p=-1 (3.2)
:.' "(' ) kl
& to determine the best policy.
- For (n,c(n)) , P(acc | n,n,p) = 1 so that (3.2) becomes
- k2
(1 - n/N)E“(_) P EI -1 . (3.3)
If (n,c(n) = n) were better than n = N , then
k2
Eﬂ(,)pk—--l <0. (3.4)
1
But in this case, n = 0 would be even better. Hence either n =0 or
n =N 1s better or just as good as (n,c(n) = n) . Q.E.D.
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4, COMMENTS

In his book, Deming (1982) says, "Inspection of incoming materials
is an economic problem, and should be so treated. None of the standard
acceptance plans, so popular in courses and textbooks, minimizes the total
cost ... Put another way, they minimize the wrong cost." More generally,
Deming should have said that optimal decision rules can only be obtained
by maximizing expected utility. In the special case when our utility for
money is approximately linear in money, this can be done by minimizing our
expected cost (calculated using a density measuring our uncertainty about
unknown but relevant quantities). Our utility function need not be ex-
clusively based on money, but it must be coherently assessed. For an
excellent account of why this approach makes sense, read Lindley,
Making Decisione (1971).

The simple decision problem considered here is a special case of two
decision problems considered more generally in Karlin (1956b) but from a

non-Bayesian point of view.
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APPENDIX

We present here an alternative algorithm for computing the optimal
n and ¢ . This algorithm, justifiable from the theorems stated in our
paper, differs from the previous one in that, instead of finding the optimal
c(n) for each n and then comparing all the pairs (n,c(n)) for
n=0,1,2, ..., N, to get the one with minimum expected cost, it uses
the same Theorem 3 in reverse to get the set of n , S(c) = {n : nl(c) <
n < n,(c)} for each c , such that c(n) in Theorem 3 equals c for all
n in the set. It then finds the locally optimal (n{c),c) within S(c)
first, and then compares all the pairs (n(c),c) for ¢ running over its
range of interest to obtain the optimal (n,c) plan.

In general, both algorithms have the same computational complexity.
But for certain prior distributions, the Beta distribution for instance,
the value of the objective function is unimodal in n belonging to the
set S(c) . So, in this case, we can use a binary search (instead of a
linear search) for (n(c),c) , and greatly reduce the computational effort.

The algorithm goes like this:

Step 0: 1If k1/k2 >1, then n=0 4is optimal. Stop. Or else, if

1
fpw(pln-l,x-omp>k1/k2,
0

(for a Beta(A,B) prior, this inequality becomes A/(A + B +
N-1) > k1/k2) then n= N is optimal. Stop. Or else,

compute the range of ¢ , 0 < ¢ < s where LR is the

largest ¢ such that ¢, < N and
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1 w
fpn(p | N, x= e )dp < kl/k2 . :;'.::;
0 L
o
For Beta(A,B) , c, = min{N,[(kllkz)(A + B+ N) - A]}. f::
b N
Set ¢ =0 . Go to Step 1. ﬁ}
k..
Step 1: Find S(c) = {n : nl(c) <n j_nz(c)} , where nl(c) is Lo
the smallest n such that n > ¢ and 3:f
fpﬂ(p | n,eddp < kllk2 H 1‘,-_2‘.
0 _::»f
n,(c) is the smallest n such that n > c and
1 f
fpn(p | n + 1,c + 1)dp < kl/k2 . .
0 w7
For Beta(A,B) , Y
-
S
n,(c) = max {c,[(k,/k))(c + A) - A - B]} ; -
‘h
nz(c) max {c,[(k2/k1)(c +A) -A-B+ k2/k1] -1} . -
Go to Step 2. TE
Step 2: In S(c) , find n(c) such that (n(c¢c),c) yields the local ;::
o
minimum in the objective function; record n(c) , ¢ , and ;
the local optimal value LOCopt(c) . Ei;
c+c+1. If ¢ 2 ¢Cy s BO tO Step 1. Or else, go to Step 3. ;:
Step 3: Compare LOCopt(c) for ¢ = 0,1, ..., <, to obtain the Eﬂ&
(global) optimal (n,c) plan. Stop. .

For the Beta prior, because of a binary search in Step 2, the total

: number of comparisons is, in the worst case, .
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(logz(kz/kl)) N

k2/k1
.
: ° For a numerical result, we use the data from the practical example
3 on pp. 279-280, Chapter 13, Deming (1982).
Lot size N = 2800 ; inspection cost k1 = $,07 ; tear-down cost
k2 = $15 so that kllk2 = 4,66 x 10.3 . p has a prior Beta(A,B)
such that E(p) = A/(A + B) = .01 , which is the value for p in
Deming's example.
A=.1,B=09.9 Nar (p) = 0.03
Inspection of Expected cost
- incoming rods per lot
- None $422
100% $198
(146,0) $ 77
.
' A=1,B=099 Nar (p) = 0.01
g Inspection of Expected cost
- incoming rods per lot
é None $422
' 100% $198
(630,2) $174
A=10, B = 990 War (p) = 0.003
Z: Inspection of Expected cost
. incoming rods - per lot
s . None $422
- 100% $198
E (2098,4) $197.97
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As we can see in the previous example, the all or none policy is not
as good as an (n,c) plan for some 0 < n < N , especially when there is
sufficient uncertainty concerning p relative to kl/k2 . We also see
that with uncertainty reduced, the optimal (n,c) plan tends to approach

either the all or the none policy.
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